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Abstract
We consider the problem of correlated percolation on a Husimi cactus, which
allows finite loops of size l, to investigate the effects of loop formation on
percolation properties. In particular, we calculate how the percolation threshold
and the percolation probability depend on l and the loop activity n. We calculate
the contribution and its dependence on l and n from finite and infinite clusters
to all densities. We show that macroscopic loops are formed immediately after
percolation, and we calculate their density dependence on l and n. We compare
the results on Husimi cactus with those on a Bethe lattice. We finally establish
that the Husimi cactus turns into a Bethe lattice as l → ∞.

PACS numbers: 64.60.Ak, 02.60.-x, 05.50.+q, 82.35.-x

1. Introduction

The tree approximation in random percolation and branched polymers has been extensively
used for almost six decades [1–4], and has played a major role in theoretical physics [5] as
an important aspect of disorder because of the analytical solution in this approximation. The
clusters of particles (lattice animals), bonded by chemical interactions or nearest-neighbour
physical contacts, can be thought of as representing branched polymers. Indeed, the field
of random percolation has evolved into a well-established and rigorous endeavour [6–10].
The tree approximation treats branched polymers or clusters as trees; no loops or cycles
are allowed. The activity for each of the allowed functionalities must be exactly equal to
one, and there must be no interaction of any sort, except for excluded volume effects, and
polymer bonding. However, the predictions of the two versions of the tree approximation
due to Flory [1], and Stockmayer [2] in the postgel regime are very different and somewhat
contradictory. Flory argued for the presence of loops in the postgel regime, while Stockmayer
argued for their absence. The situation was clarified only recently [11], when it was shown
that both were partially correct. Stockmayer was correct in that there are no finite size loops,
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(a) (b)

Figure 1. (a) A triangular cactus made up of triangles, and (b) a square cactus made up of squares,
connected in a tree-like manner, so there is only one connected path between any two polygons.
The corners of the polygons are labelled by a generation number m.

while Flory was correct in that there are macroscopic loops, in the postgel regime in the tree
approximation. It was pointed out there that the conventional tree approximation [1, 2] on
a regular lattice can be different from random percolation on a Bethe lattice of the same
coordination number. In particular, the loop activity n, which must be zero for the tree
approximation (thus defining the tree percolation) and equal to one for random percolation
(thus defining the random percolation), plays no role in the Bethe lattice calculation as there
are no finite size loops in the Bethe lattice. This makes the tree and random percolation the
same on a Bethe lattice. Thus, this calculation does not really settle how the tree and the random
percolation are different. In addition, in polymerization of branched polymers, one usually
deals with only lower functionalities like tri-, and tetra-functionalities [3, 4], even though the
lattice required to represent the system will usually have a coordination number q somewhat
larger than 4. Random percolation either on a Bethe lattice or a regular lattice requires all
functionalities up to the coordination number q of the lattice; see equation (3c) below. If the
maximum allowed functionality is strictly less than q, the percolation is no longer random
in nature, but becomes correlated or non-random. We refer the reader to [11, 12] for further
discussion on these points, and for an extensive bibliography.

On a regular lattice, which allows for loops, the tree percolation should be very different
from random percolation. This is so because the requirement that no loops are ever formed
generates correlations in the placement of chemical or physical bonds on the lattice. There are
no such correlations in random percolation. Thus, the tree percolation should have different
predictions than random percolation on lattices having loops. It is the differences that we wish
to investigate here. Since the investigation cannot be carried out analytically for regular lattices
at the present moment, we must resort to an alternative approach.

In the present work, our aim is to investigate analytically the effects of the loop activity
n on a Husimi cactus (see figures 1(a), (b) for a triangular and a square cactus), which allows
for small-size loops. We will consider the case in which two l-sided regular polygons meet
at each site of the cactus including the origin. (In general, more than two different polygons
meet at each site and our approach is easily extended to the general case.) Each polygon has
l other polygons connected to it, one at each of its l corners, in such a way that there are no
closed loops of size larger than l, the loop formed by each polygon. We consider two different
Husimi cacti, made up of triangular and square polygons, respectively. But the method is
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easily generalized to higher polygon cacti, and we give results for a general Husimi cactus.
We consider not only the random percolation (n = 1), and the tree percolation (n = 0), but
the more general problem with arbitrary n on the cactus. The calculation is done exactly using
the recursive technique that has been used elsewhere [11–13] to study percolation on a Bethe
lattice. The analytical results are compared with those on the Bethe lattice. We also discuss
the relationship between a Husimi cactus and a Bethe lattice as l → ∞.

The layout of the paper is as follows. We introduce our model and notation in the next
section. The recursion relations (RRs) are derived in sections 3 and 4 for a triangular and a
square cactus, respectively. However, we present final results in a form valid for a general
cactus of l-sided polygons. The general cactus is treated in section 5. We also consider random
and tree percolation here in detail. The percolation threshold, percolation probability and other
percolation properties are introduced and investigated for a triangular cactus in section 6. We
consider arbitrary l in section 7. The final section contains a discussion and a brief summary
of our results.

2. Model

The general model of branched polymers in a solution is defined in [11, 12], and requires a
set of branching activities wk for a k-functional unit, k = 1, 2, . . . , the bond activity K , the
loop activity n, and the Boltzmann weight w for the nearest-neighbour interaction between a
monomer and a solvent molecule. The notation is introduced in [11, 12], which we closely
follow here. We will use ‘bond’ or ‘polymer bond’ to denote chemical or physical bonding;
the latter is useful for (site) percolation in monomeric units. We will use the term ‘lattice
bond’ to denote a bond on the lattice, which may or may not be ‘occupied’ by a polymer
bond. We will use ‘percolation’ in this work to contain not only random percolation (n = 1)
and the tree percolation (n = 0), but all other values of n. For the percolation considered in
this work, we additionally set wk = 1 for each k-functional unit, and w = 1. Therefore, for
n = 1, percolation considered here reduces to the random percolation. The technique is easily
extended to arbitrary branching activities, and will be discussed elsewhere. The total partition
function (PF) for percolation is given by

ZN(K|n) =
∑
B,L

�(B,L)KBnL (1)

where B and L denote the total number of bonds and loops (or cycles) in all polymers or
clusters on a lattice of total sites N ; the quantity �(B,L) denotes the number of distinct
configurations, each having the same B andL. In addition, each cluster must have at least one
bond. Any site left uncovered by polymers is considered occupied by a solvent molecule. In
this model, the monomer and the solvent molecule are supposed to occupy the same volume.
LetP denote the number of distinct polymers,N0 the number of solvent molecules,M the total
number of monomers, i.e. sites covered by all polymers, and Vk the number of k-functional
branches in any configuration. For each configuration, the following geometrical identities
must be observed for all clusters on a finite lattice:

2B =
∑
k�1

kVk M = N −N0

∑
k�1

(2 − k)Vk = 2(P − L). (2a)

The first equation shows that each k-functional branch contributes k bond, and that each bond
is counted twice in the sum. The second equation merely states that each site is covered by
a monomer, or by a solvent molecule. The last equation, also known as the Euler relation
for graphs, is taken as a definition of the number L of loops. The thermodynamic limit is
obtained by taking N → ∞ at fixed activities. In this limit, various extensive quantities also
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diverge, but their ratio with N remains finite. Let us introduce these densities φα = α/N

in the thermodynamic limit, where α represents any extensive quantity (B,P,L,M,N0, Vk ,
etc). For convenience, we will use φ0 and φk for α = N0 and Vk , respectively. In terms of
densities, we can re-express equation (2a) as follows:

2φB =
∑
k�1

kφk φM = 1 − φ0

∑
k�1

(2 − k)φk = 2(φP − φL). (2b)

As discussed in [11, 12], the last equation in (2b) relates local densities φk to global densities
φP and φL, and remains valid as long as percolation has not occurred. After percolation,
this equation need not be satisfied for all clusters due to the emergence of the infinite cluster.
However, the equation remains valid when applied separately to finite and infinite clusters. We
refer the reader to [11, 12] for further details. The bond occupation probability p is related to
the bond density via

p = φB/(q/2) (2c)

since the number of lattice bonds for a lattice of the coordination number q is NB = qN/2.
For random percolation (n = 1), we can introduce

�(B) =
∑
L:B

�(B,L) (3a)

where the sum is over all allowed loops consistent with B bonds in the configuration. Since
bonds are now randomly placed on the lattice, we evidently have

�(B) =
(
NB
B

)
. (3b)

The partition function for random percolation1, is

ZN(K|1) ≡
∑
B

�(B)KB = (1 +K)NB . (3c)

The situation for tree or other non-random percolation is not so trivial, as n �= 1 generates
correlations in the placement of bonds on the lattice; we need to inquire if loops are formed,
the determination of which cannot be done locally. Such correlations are absent for random
percolation. A similar complication arises if all functionalities up to and including q are not
allowed with activities equal to one.

The main interest in percolation is to determine the percolation threshold Kc(n) and
the percolation probability Pn(p). The simple form in equation (3c) gives no hint of these
quantities, which must be calculated by other methods. Here, we will employ the recursive
method proposed in [11,12], which requires slight modification. We will also evaluate the free
energy by using the scheme proposed in [13].

The calculation is carried out for a Husimi cactus. The sites in the cactus are labelled by
a generation index m, which increases gradually as we move outwards away from the origin
(m = 0), as shown in figure 1(b). At each site at the mth generation, there are q = 4 nearest-
neighbours, as shown in figure 2, equally shared by the two polygons. Of the two polygons
meeting at the mth generation (m > 0), the polygon that contains sites of higher generation
(m + 1) (lower generation (m − 1)) will be called the upper (lower) polygon. The origin is
exceptional in that both polygons are upper polygons. With respect to the upper polygon at
the mth site, the mth site will be called its base site, and the (m± 1)th sites its upper (lower)
sites.

1 There is an inconsequential error in the exponent in equation (6) of [11]. It should beNB , as given in equation (3c)
here, and in equation (2.9) in [12]. The error does not affect any of the conclusions in [11].
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Figure 2. Various possible states σ of a site: (a) σ = s representing the s-state with a solvent
molecule at the site; (b) σ = 0 representing the 0-state, having no incident bonds from the upper
polygon; (c) σ = 1 representing the 1-state with one incident bond from the upper polygon;
(d) σ = 2 representing the 2-state with two incident bonds from the upper polygon. The broken
bonds cannot be occupied by polymers. A thick bond represents an occupied bond. A thin bond
may or may not be occupied.

The state σ of each vertex can be classified as s, 0, 1, 2 and b defined below.

(1) The state σ = s, see figure 2(a), means that the site is occupied by a solvent molecule (s).
There cannot be any polymer bond attached to this site from either of the two polygons.
This is indicated by broken bonds that cannot be occupied.

(2) The state σ = 0, see figure 2(b), means that there is no polymer bond incident on this
site from the upper polygon. There must be at least one polymer bond (shown as thick)
incident on this site from the lower polygon. The thinner bond indicates the possibility
that it may or may not be occupied by a polymer bond.

(3) Figure 2(c) indicating one polymer bond and 2(d) indicating two polymer bonds incident
on this site from the upper polygon represent σ = 1 and 2, respectively. The broken bond
indicates that it cannot be occupied by a polymer bond. There may or may not be any
bonds incident on this site from the lower polygon; both lower bonds are thin. The state
σ = b represents σ = 1 and 2 collectively.

The tree-like structure of the cactus allows us to treat its various branches, which are
obtained by cutting out some polygon, as independent. Thus, the method proposed in [13]
enables us to calculate the total partition function and the free energy per site. For this, we
consider cutting the cactus into two branches at some mth level site, and introduce the partial
partition function Zm(σ), which represents the contribution of the entire branch containing
the upper polygon at the mth level site, given that the base site is in the σ state. This partial
partition function can be related in the recursive scheme with Zm+1(τ ) at the higher level as
follows:

Zm(σ) = Trt

[
W(σ |t)

∏
τ∈t
Zm+1(τ )

]
(4)
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(a) (b) (c)

(d) (e) ( f )

Figure 3. Possible states of a triangle with the base site in the s-state.

where t denotes the set of states {τ } of the l′ = l − 1 upper sites in the polygon, and W
represents the contribution to the partial partition function from the upper mth polygon, given
that the base site is in the state σ and the upper sites are in the state set {τ }. The trace operation
denotes summing over all possible states of the (l − 1) upper sites. In the following two
sections, we will apply equation (4) to two different Husimi cacti. The results for arbitrary l
will be presented in section 5.

The following combinations will prove extremely useful in the following:

Um = Zm(0) + Zm(b) Vm = Zm(s) + Zm(b). (5)

3. Recursive solution: triangular cactus (l = 3)

We consider the cactus in figure 1(a) composed of triangles. Let us first consider σ = s at
the mth site. There are two upper sites (at the (m + 1)th level), and we must consider the set
t of the states of both sites. The sites can each be in the τ = s state (see figure 3(a)), which
will contribute two factors of Zm+1(s). All three bonds in this triangle must be unoccupied,
whenever there are at least two s sites in the triangle. Thus, there in no polymer bond and no
loop formation, and the corresponding W = 1. The possibility (s, 0) for the two upper sites
is impossible, as all three bonds must be unoccupied in this polygon as there are two s sites;
thus the state 0 with a bond in this polygon (which plays the role of the lower polygon at this
site) is impossible. It is possible for the two sites to be in the (s, b) state (figure 3(b)). Here,
W = 2 for the two possible ways a site can have the solvent molecule. Thus, the contribution
is 2Zm+1(s)Zm+1(b). The two sites each can be in the 0-state (figure 3(c)), with the lattice bond
between the two occupied by a polymer bond and contributing K to W . The contribution of
this configuration is KZ2

m+1(0). Similarly, for the two sites in the (0, b) state (figure 3(d)),
the contribution is 2KZm+1(0)Zm+1(b). The last possibility is (b, b). The bond between the
two sites can be unoccupied (figure 3(e)) by a polymer bond and gives a contributionW = 1,
or occupied by a polymer bond (figure 3(f )) and gives a contribution W = K . The two
contributions can be added together to yieldW = u ≡ 1 +K , so that the contribution becomes
uZ2

m+1(b). We find that identical contributions are also obtained for Zm(0). Thus, we have

Zm(s) ≡ Zm(0) = Z2
m+1(s) + 2Zm+1(s)Zm+1(b) +KZ2

m+1(0)

+2KZm+1(0)Zm+1(b) + uZ2
m+1(b). (6a)
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We conclude that Um = Vm in the current model. Hence, we will use Um for both in the
following unless necessary. Using Um, we can rewrite equation (6a) in a compact form
(l = 3), which we will see later to be valid for any l:

Zm(s) ≡ Zm(0) = ul−2Ul−1
m+1. (6b)

We now consider the mth site state σ = b and its two parts σ = 1 and σ = 2. The two
upper sites cannot both be in the s-state since this requires all three bonds to be unoccupied;
see above. The following combinations are allowed to occur: (s, 0), (s, b), (0, 0), (0, b) and
(b, b) in various possible orderings, as shown in figure 4. The calculation of corresponding
W factors is also trivial here. We illustrate this with a few examples. Consider the first case,
figure 4(a), which can occur in two possible orderings {s, 0) and {0, s}. In each ordering,
there must be a polymer bond attached to the 0-state site. The b-state at the mth level can
have only one polymer bond due to the presence of an s-state site. The same is true of the
case (s, b), figure 4(a). For both cases, W = 2K . For the case (0, 0), we must consider three
possibilities: there is one bond (figure 4(b)), or two bonds (figures 4(c), (d)) connected to the
base site in the σ = b state. There must be an additional bond between the two upper sites in
figure 4(b); hence, it contributesW = 2K2. The contributions of figures 4(c), (d) are K2 and
K3n, respectively, which can be combined together to contributeK2(1+Kn). The presence of
n signifies a loop formed by the three bonds, which contributesK3n. Thus,W = K2(3 +Kn).
Similarly, we can easily check thatW is 2K(1 + 3K +K2n) and K(2 + 3K +K2n) for (0, b)
and (b, b), respectively; they can be obtained by replacing 0 by b in figures 4(c), (d). Finally,
we have the recursion relation

Zm(1) = 2K[Zm+1(s)Zm+1(0) + Zm+1(s)Zm+1(b)] + 2K2Z2
m+1(0)

+4K(1 +K)Zm+1(0)Zm+1(b) + 2K(1 +K)Z2
m+1(b)

= 2Kul−2Ul−1
m+1 (7a)

Zm(2) = K2(1 +Kn)[Z2
m+1(0) + 2Zm+1(0)Zm+1(b) + Z2

m+1(b)]

= K2(ul−2 + νKl−2)Ul−1
m+1

Zm(b) = 2K[Zm+1(s)Zm+1(0) + Zm+1(s)Zm+1(b)] +K2(3 +Kn)Z2
m+1(0)

+2K(2 + 3K +K2n)Zm+1(0)Zm+1(b) +K(2 + 3K +K2n)Z2
m+1(b)

= KUl−1
m+1[ul−2(K + 2) +Kl−1ν]. (7b)

We have introduced ν = n− 1. The final forms of various quantities in terms of l, given here
and below, remain valid for any l, as we will see. We define the following ratios:

xm,s ≡ Zm(s)/Zm(b) xm,k ≡ Zm(k)/Zm(b) k = 0, 1, 2. (8a)

From the definition, it is obvious that

xm,1 + xm,2 = 1. (8b)

These ratios approach a fixed-point (FP) solution, which we denote without the index m, as
we approach the origin of an infinite cactus. The condition in equation (8b) must remain valid
at the FP. Moreover, in the case that we are considering, xs and x0 are the same and we will
denote this common value by x in this work. Thus, we must calculate x and x1; x2 is given by
1 − x1; see equation (8b). Introducing a polynomialQ1(x, n) given by the ratio

Q1(x, n) ≡ Zm(b)/Zl−1
m+1(b) (9)

at the FP solution, we can write the FP equations after some trivial manipulation as

xQ1 = ul−2ξ l−1 x1Q1 = 2Kul−2ξ l−1 x2Q1 = K2(ul−2 +Kl−2ν)ξ l−1 (10)
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(a) (b)

(c) (d) Figure 4. Possible states of a triangle with the base site in the b-state.

where we have introduced the useful combination

ξ ≡ x + 1. (11a)

We have also made use of the following:

Um+1/Zm+1(b) ≡ Vm+1/Zm+1(b) = ξ. (11b)

The power of ξ in equation (10) is the number of upper sites l − 1 in the polygon.
The physical significance of the three equations in equation (10) is the following. Consider

the mth site, which is occupied either by a solvent molecule or a monomer, but no polymer
bonds are incident on it in the upper polygon. The remaining third bond connecting the higher
generation sites may or may not be occupied and, thus, contributes a factor u. This explains
the first equation. If the mth site is in the state σ = 1, then there are two ways this polymer
bond in the upper polygon can be incident on themth site. This contributes the factor 2K . The
third bond in the polygon contributes u as before. This explains the second equation. If the
mth site is in the state σ = 2, then there are two polymer bonds in the upper polygon incident
on the mth site. This contributes a factor K2. The third bond in the polygon contributes
u + Kν ≡ (1 + Kn), where we have inserted the loop activity n for the loop that can be
formed. This explains the last equation. We will find this discussion extremely useful when
we generalize our results for arbitrary polygons in section 5. In terms of the combinations in
equation (5), the above remarks translate into the following. Each upper site containing the
solvent contributes a factor Vm+1; each upper site containing a monomer contributes a factor
Um+1.

By adding the last two equations in (10), we find that

Q1(x, n) = K[(K + 2)ul−2 +Kl−1ν]ξ l−1 (12)

where we have used the fact that x1 + x2 = 1. Thus, the FP solution for l = 3 is analytically
given by

x(n) = u/K[(K + 2)u +K2ν] x1(n) = 2u/[(K + 2)u +K2ν]
x2(n) = K(u +Kν)/[(K + 2)u +K2ν].

(13)

For random percolation, we must set n = 1 or ν = 0. We have

x = 1/K(K + 2) x1 = 2/(K + 2) x2 = K/(K + 2). (14)

For tree percolation, we must set n = 0 or ν = −1 and we have

x = (K + 1)/K(3K + 2) x1 = 2(K + 1)/(3K + 2) x2 = K/(3K + 2). (15)
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4. Square cactus (l = 4)

The calculation, though somewhat tedious, is almost identical to that for the triangular cactus.
We label each site by a generation number, as shown in figure 1(b). Each site can be in any of
the four possible states σ = s, 0, 1 and 2. The complication comes from having three higher
level sites in a square, rather than the two upper sites in a triangle. The calculation requires
considering all possible combinations of the states t of the three sites. These are: t = (s, s, s),
(s, s, 0), (s, s, b), (s, 0, 0), (s, 0, b), (s, b, b), (0, 0, 0), (0, 0, b), (0, b, b) and (b, b, b) in all
their possible orderings.

Let us consider themth site in the s-state, and the three upper (m+ 1)th level sites; see the
central square in figure 1(b). In the following, we will consider the three upper sites in clockwise
order when discussing the possible orderings of the states of these sites. The (s, s, 0) is not
possible in any of its permutations or orders. The possible orderings of (s, 0, b) are {s, 0, b},
{s, b, 0} and {0, s, b}, with outer states interchanged. The last ordering with its outer states 0
and b interchanged leaves 0 surrounded by two s state sites and is not possible. The remaining
orderings with their outer states interchanged contribute 4KZm+1(s)Zm+1(0)Zm+1(b), with K
accounting for a polymer bond attached to the 0-state site. Similarly, the ordering {0, s, 0} is
not possible for (s, 0, 0). The contribution from (s, 0, 0) is seen to be 2KZm+1(s)Z

2
m+1(0). Let

us introduce a compact notation

Zm+1(τ, τ
′, τ ′′) ≡ Zm+1(τ )Zm+1(τ

′)Zm+1(τ
′′).

Here, τ, τ ′ and τ ′′ represent the states of the upper sites. We obtain the following RRs:

Zm(s) ≡ Zm(0) = Zm+1(s, s, s) + 2KZm+1(s, 0, 0) + 4KZm+1(s, 0, b)
+(1 + 2u)Zm+1(s, b, b) +K2Zm+1(0, 0, 0) +K(K + 2u)Zm+1(0, 0, b)
+K(1 + 3u)Zm+1(0, b, b) + u2Zm+1(b, b, b)

Zm(1) = 2K[Zm+1(s, s, 0) + Zm+1(s, s, b) +KZm+1(s, 0, 0) + 2uZm+1(s, 0, b)

+(1 + u)Zm+1(s, b, b) +KuZm+1(0, 0, 0) +K(K + 2u)Zm+1(0, 0, b)
+K(1 + 3u)Zm+1(0, b, b) + u2Zm+1(b, b, b)]

Zm(2) = K2[Zm+1(s, 0, 0) + 2Zm+1(s, 0, b) + Zm+1(s, b, b) + (u2 +K2ν − 1)Zm+1(0, 0, 0)
+(3u2 + 3K2ν − 2)Zm+1(0, 0, b) + (3u2 + 3K2ν − 1)Zm+1(0, b, b)
+(u2 +K2ν)Zm+1(b, b, b)].

(16)

The RR for Zm(b) is obtained by adding the last two equations in equation (16). It is easy to
check that these RRs can be rewritten in a compact form as follows: Zm(s) ≡ Zm(0) = u2U 3

m+1,
Zm(1) = 2Ku2U 3

m+1, Zm(2) = K2U 3
m+1(u

2 +K2ν) and are equivalent to the general results in
section 3 for l = 4. Similarly, if we introduce the ratios defined in equation (8a), and consider
their FP solution, then they also satisfy the general relations in section 3 for l = 4.

It is easy to see that for l = 4, x and x1 for random percolation are the same as in
equation (14). However, they are different from those in equation (15) for tree percolation.

5. General solution for a l-polygon cactus

The general results for the FP ratios have already been given in equation (10), and can be
derived by the general method for arbitrary l presented in section 7, where we investigate
percolation related properties. From the first equation in equation (10), and the form ofQ1 in
equation (12), we easily find that

ξQ1 = (ul +Klν)ξ l−1. (17)
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The alternative form forQ1 in equation (18) will prove more useful in the following:

Q1 = (ul +Klν)ξ l−2. (18)

We now turn our attention to calculating various densities. First, we calculate the total
partition function ZN by considering the two polygons meeting at the origin:

ZN ≡ Z2
0(s) + 2Z0(0)Z0(b) + Z2

0(b) = Z2
0(b)ξ

2. (19)

The density of solvent molecules is given by the ratio Z2
0(s)/ZN :

φ0 = (x/ξ)2. (20)

The density of monomers is φM = 1 − φ0. The end-point density is obtained by considering
all possible cases in which there is one end-point at the origin. This event corresponds to
having the state of the origin in one polygon to be 0, and in the other to be 1. Thus, the ratio
2Z0(0)Z0(1)/ZN gives the end-point density φ1. We obtain

φ1 = 2xx1/ξ
2. (21)

Similarly, the ratios [2Z0(0)Z0(2) + Z2
0(1)]/ZN , 2Z0(1)Z0(2)/ZN and Z2

0(2)/ZN give φk ,
with k = 2, 3 and 4, respectively, and we obtain

φ2 = (2xx2 + x2
1 )/ξ

2 φ3 = 2x1x2/ξ
2 φ4 = x2

2/ξ
2. (22)

It can be easily seen from equation (19) that the sum of all k-functional units (k � 1), which
is nothing but the monomer density φM , and the solvent density φ0 add up to one. This must
be so as every site of the lattice is covered by either a solvent molecule or by a monomer. The
bond density is obtained by the use of equation (2b). A simple algebra yields

φM = 1 − x2/ξ 2 φB = (x1 + 2x2)/ξ. (23)

Using equations (10) and (18), we can rewrite the two densities as a function of the two
activities K and n only:

φM = 1 − [ul−2/(ul +Klν)]2 φB = 2K(ul−1 +Kl−1ν)/(ul +Klν). (24)

The loop density can also be easily calculated, as all finite loops are ‘local’ in that they
are of the size of a polygon. It should be clear from the previous two sections that these
loops contribute only when we consider the RR for Zm(b). Moreover, each loop comes with a
factor of n. Thus, a loop is formed when all sides of a polygon are occupied, and contributes
KlnUl

′
m+1. The last factor Ul

′
m+1 comes because each of the l′ upper sites can be in either of the

two states. The contribution to Um from all configurations that do not contain any loop in the
mth polygon is Um −KlnUl′m+1.

Consider the origin and the two polygons meeting there. If both polygons contain a loop,
we obtain two loops and the contribution to the loop count is 2[KlnUl

′
1 ]2. If only one of the

polygons contains a loop, then the contribution is 2KlnUl
′

1 [U0 −KlnUl′1 ]. We have multiplied
this contribution by 2 to account for the two possible ways a polygon can be selected to have a
loop. The sum of these two contributions divided by the total PF determines the loop density.
Thus, we finally have

φL ≡ 2nKlUl
′

1 U0/lZN = 2nKlξ l−2/lQ1. (25)

Here, we have used equations (9), and the fact that Um/Zm(b) = ξ at the FP. We have also
divided by the size of a polygon, since the same polygon contributes to the loop count for
all of its l sites. Using equation (2b), we can calculate the number density φP . It should be
remarked that the above loop density contains only finite size (l) loops. Using equation (18),
we can rewrite the loop density as a function of the two activities as follows:

φL = 2nKl/[l(ul +Klν)]. (26)
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We now calculate the free energy for the model. For this, we use the trick proposed
earlier [13]. For the trick to work, we also need to calculate the total PF of a smaller lattice.
For the Husimi cactus, the smaller lattice is obtained by taking out the two central polygons
meeting at the origin. This gives rise to 2l′ branches from which l′ smaller lattices can be
constructed by joining two branches at a time. The partition function ZN ′ for the smaller
lattice is given by exactly the same formula as in equation (19), except that all Z0(σ ) are
replaced by Z1(σ ). Here, N ′ denotes the number of sites in the smaller lattice. There are
2l additional bonds or l additional sites in the larger lattice compared to those in all of the
l′ smaller lattices. Thus, the free energy per site (without the conventional −T , T being the
absolute temperature in units of the Boltzmann constant) is given by

ω ≡ (1/l) ln(ZN/Z
2
N ′) = (2/l) ln(Q1/ξ

l−2) = (2/l) ln(ul +Klν) (27)

where we have used equation (18) to derive the third equation. The last equation gives the
free energy in terms of the two activities alone. It also shows that the free energy depends
on the loop activity. In particular, it is smaller for the tree percolation than for the random
percolation at the sameK . Because of the presence of n in the PF in equation (1), we can also
calculate the loop density by differentiating the free energy since φL = n(∂ω/∂n)K . A simple
manipulation shows that we obtain equation (26). We can also calculate the bond density in
equation (24) by the relation φB = K(∂ω/∂K)n.

The entropy S(φB, φL) per site is obtained by the Legendre transform

S(φB, φL) = ω(K, n)− φB lnK − φL ln n (28)

and can be calculated easily.
We now consider the random and tree percolation separately.

5.1. Random percolation

We must set n = 1, or ν = 0. This simplifies the polynomial Q1, and we find that x, x1 and
x2 are independent of l, and are given by equation (14). The combination

ξ = u2/K(K + 2) (29)

is also independent of l. It is easy to see that the free energy per site ω from equation (27) is
2 ln u, which is expected2; see equation (3). The bond density is

φB,RP = 2K/u (30)

and the probability p that a bond is occupied, see equation (2c), is given by pRP ≡ φB,RP /2 =
K/u in random percolation [11,12]. In terms of the bond density, we haveK = φB/(2 −φB),
and we can use equation (28) to obtain the entropy per site

S(φB) = −2[p lnp + (1 − p) ln(1 − p)]
where p is the bond occupation probability. The entropy per lattice bond is just the standard
combinatorial entropy of choosing B bonds out ofNB lattice bonds. The free energy per bond
is ln[1/(1 − p)] in random percolation.

The behaviour in the limitK → ∞ is easy to explore. In this limit, all bonds on the lattice
must be occupied and maximum possible loops due to polymer bonds must be formed. We
call this limiting cluster the maximal cluster. ForK → ∞, x and x1 vanish so that ξ → 1 and
x2 → 1. Indeed, we see from equations (21), and (22) that only φ4 = 1 is non-zero. Thus, the
monomer density is one, and there are no solvent molecules. Furthermore, the bond density

2 The free energy ω = ln(1 +K) in [11] is per bond and not per site.
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φB = 2, which is its maximum possible value consistent with q = 4. From equation (26), we
also find that φL = 2/l.

We now apply equation (2b) to the maximal cluster in the limit K → ∞ to calculate the
total density φL,tot of loops. Since all sites are covered, we have φM = 1 and φP = 0 (only
one maximal cluster). Thus, φL,tot = 1, which is greater than φL = 2/l calculated above.
The latter represents the density of all finite loops in the maximal cluster, which is an infinite
cluster. The difference is due to infinite loops that have appeared after percolation, as discussed
in [11]. The density of infinite loops in the maximal cluster has its maximum value and is given
by

φ
(∞)
∞L,max = (l − 2)/ l (31)

and increases with l. We will see below that it is also the loop density in the maximal cluster in
the tree percolation. The infinity symbol in the subscript is a reminder that we are considering
infinitely large loops, while in the superscript it is a reminder that we are considering an infinite
cluster. On the other hand, the finite loop density decreases. (It should be recalled from [11]
that equation (2b) is applicable to finite and infinite clusters separately.) For a triangular
Husimi cactus, we have φ(∞)∞L,max = 1/3 for infinitely large loops, and φ(∞)fL,max = 2/3 for
finite-sized loops. This result was quoted in [11] without any proof. For a square cactus, they
are equal to 1

2 . For comparison, we have φ(∞)∞L,max = 1 and φ(∞)fL,max = 0 on a q = 4 Bethe
lattice.

5.2. Tree percolation

In this case, we must set n = 0, or ν = −1. This destroys the simple nature of Q1, and the
problem becomes somewhat complicated. At the FP, we have

x = ul−2/K[(K + 2)ul−2 −Kl−1] x1 = 2ul−2/[(K + 2)ul−2 −Kl−1]
x2 = K(ul−2 −Kl−2)/[(K + 2)ul−2 −Kl−1]

(32)

and the solution is no longer independent of the polygon size l. From equation (24), we find

φB,T P = 2K

(
ul−1 −Kl−1

ul −Kl
)

(33)

with the probability of a bond being occupied given by pTP ≡ φB,T P /2. We see immediately
that the bond density in the tree percolation is smaller than its value in random percolation at
the same K .

We again consider the K → ∞ limit. We find that x vanishes, but

x1 → 2/l x2 → (l − 2)/ l. (34)

Therefore, the solvent and the end-point densities vanish, as expected. However, the other
functionalities do not vanish:

φ2 → 4/l2 φ3 → 4(l − 2)/ l2 φ4 → (l − 2)2/l2. (35a)

The bond density, therefore, from the first equation in (2b) is

φB,T P → 2(l − 1)/ l < 2 (35b)

and is less than its value in random percolation, which is always two. The density in
equation (35b) is the maximum possible value when no loops are formed inside the polygons,
as can easily be checked. The finite size loop densityφ(∞)fL is obviously zero as can be seen from
equation (26); here, the subscript f stands for finite-size loops. To calculate the infinite-size
loop density in the maximal infinite cluster, we again turn to the last equation in (2b) and use
the fact that the monomer density is one. We find that it is exactly the density in equation (31).
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Thus, the infinite-size loop density in the maximal cluster does not depend on the value of the
loop activity. This is not surprising as the number of loops reaches its asymptotic value, and
n plays no role in this limit.

6. Percolation

We now proceed with the calculation of percolation properties. We restrict ourselves to the FP
solution, and introduce the probability R that the cluster of connected polymer bonds, which
reaches themth level from higher levels, is a finite cluster above this level. Since a cluster has
reached this level, there must be at least one bond incident on this level from above. Therefore,
the base site at the mth level is in the b-state. We now consider all possible states t of the
upper sites and look for the condition that this cluster remains finite above any of these upper
sites. To find the contribution Z(f )m (b) of all clusters that reach the mth level from above, but
are finite above this level, it will be convenient to consider all possible ways upper sites are
connected to the base site. For this, we assume that the base site is connected to upper sites
by a linear chain or a ring of d occupied bonds; thus, d may be equal to l. Every upper site
on this chain or ring cannot have a solvent molecule. The remaining sites left uncovered by
the chain in the upper polygon may be connected together by polymer bonds. However, these
bonds must be disjoint from the above chain.

We first consider the triangular cactus and the upper sites in the mth triangle. If an upper
site is in the s- or 0-state, the cluster is finite above that site with probability one. If a site is
in the b-state, it is finite above that site with a probability R. However, we need to include the
probability R for only those b-state upper sites that are connected to the mth level base site.
For upper sites in the b-state that are disconnected from the base site, the cluster is finite above
the base site with probability one.

Single incident bond. Some of the possible states of the triangles are shown in figures 4(a),
(b). Let us take d = 1. First consider figure 4(a). One of the upper sites is in the s-state which,
therefore, is not connected to the mth level site. The other site can be in either the 0- or in the
b-state, and is connected with the mth site. The contribution from Zm+1(b) must be reduced
by R. In the following, we will find it convenient to introduce the following combination:

Um+1 = Zm+1(0) + RZm+1(b) (36)

which reduces to Um+1 for R = 1. The above contribution from finite clusters (d = 1
chain) is 2KZm+1(s)Um+1. We can replace the s-state by a b-state, such that this site remains
disconnected from the base site. This gives the additional contribution 2KZm+1(b)Um+1. It
is not possible to replace the s state by a 0 state for d = 1. Adding the two contributions,
we find that the total contribution from finite clusters with the d = 1 chain is 2KVm+1Um+1.
For the d = 2 chain with two bonds connecting the upper sites with the mth site, we need to
consider figure 4(b), in which we can replace each 0-state by a b-state also. The total finite

cluster contribution from these states is similarly 2K2U
2
m+1.

Double incident bonds. We need to consider figures 4(c), (d). In figure 4(c), we can again

replace each 0 state by a b state. Thus, the contribution is K2U
2
m+1, as above for figure 4(b).

For the closed loop formed by three bonds (d = l), figure 4(d), the contribution is K3nU
2
m+1.

The contributions to Z(f )m (b) from the closed loop and a chain with d = l − 1 contain the
same power (l′ ≡ l− 1) of Um+1; the pre-factorsKln and lKl

′
, respectively, are different. We

also conclude that each upper level site connected to themth site contributes a factor of Um+1,
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and each upper level site disconnected from themth site contributes a factor of Vm+1 provided
there is no bond in the polygon connected to this site. For the triangular cactus, we get

Z(f )m (b) = 2KVm+1Um+1 + 3K2U
2
m+1 +K3nU

2
m+1. (37)

By definition, we have

R = Z(f )m (b)/Zm(b). (38a)

However, it is convenient to introduce another more useful quantity R defined as below:

R = [Z(f )m (0) + Z(f )m (b)]/[Zm(0) + Zm(b)] (38b)

where we must observe that Z(f )m (0) and Zm(0) are the same, as a site in 0-state is always part
of a finite cluster above it. The same is true of an s-state site. The above combination is more
useful since the denominator Um in equation (38b) will be a common factor as we will see
below.

Dividing the numerator and the denominator on the right-hand side in equation (38b) by
Zm(b), we find that

R = (x + R)/(x + 1) = ζ/ξ (39)

where we have introduced a new combination ζ(R) ≡ x + R, so that ξ ≡ ζ(1), used in
equation (11b), and:

Um+1/Zm+1(b) = ζ. (40)

Using equations (37) in (38b), we immediately find the following FP equation determining R:

R = ρ(R) ≡ x/ξ + ξ [2KR + (3K2 + nK3)R
2
]/Q1 (41)

whereQ1 is given in equation (12) with l = 3. We note that at R = 1, R = 1, which is always
a solution of equation (41).

The knowledge of R or R is important to calculate separate contributions to any
thermodynamic density from finite and infinite clusters. According to the fundamental
principles laid down in [11], the k-functional densities in the finite and infinite clusters are,
respectively, given by

φ
(f )

k = φk φ
(∞)
k = φk − φk (42a)

where we have introduced new quantities φk as in equations (20)–(22), except that we must
replace xk by xk on the right-hand side, where

x = x x1 = x1R1 x2 = x2R2. (42b)

The quantity

Rk = Z(f )m (k)/Zm(k) (42c)

denotes the probability that the k-state (k = 1, 2) at the mth site is part of a finite cluster at
higher levels. A similar quantity for σ = 0 or s is evidently one, as either one of them is
unconnected to a cluster above the base site. It is easily seen that

R1 = R(1 +KR)/u R2 = R2
(43a)

and satisfy the following relation:

R = (x + R1x1 + R2x2)/ξ (43b)

which is equivalent to equation (41) as can be easily checked. We note that for R = 1, all
other R are also one. Thus, all R simultaneously become different from one, and any one of
them can be used to signal percolation in the system.
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We can apply equation (2b) to finite and infinite clusters separately. Thus, we can calculate
various densities for the finite and the infinite clusters. Let us consider the contributions from
finite clusters to the monomer and bond densities. A simple algebra yields

φ
(f )

M = R2 − (x/ξ)2 φ
(f )

B = R(x1 + 2x2)/ξ. (44a)

The form of these expressions should be compared with those in equation (23). The
contributions from the infinite cluster are obtained by subtracting these quantities from their
total values φM , φB respectively. A simple algebra yields

φ
(∞)
M = 1 − R2

φ
(∞)
B = [x1(1 − R1) + 2x2(1 − R2)]/ξ. (44b)

For the triangular cactus, we must use equation (43a) in the second of equations (44b). It
is evident that φ(∞)k , φ(∞)M and φ(∞)B vanish, as expected, before percolation since R = 1.
However, as soon as percolation occurs, all these quantities become nonzero.

The percolation probability Pn(p) is related to the bond density of the infinite cluster as
follows:

Pn(p) ≡ φ(∞)B /φB = [x1(1 − R1) + 2x2(1 − R2)]/(x1 + 2x2). (44c)

We turn back to equation (41). Graphically, we look for the crossing of ρ(R) and R
to find the solution. We immediately notice that R = 1 is always a solution. This solution
corresponds to all clusters being finite. For an infinite cluster to appear, a new solution R < 1
must appear. (A solution R > 1 is unphysical as a probability and must always be rejected.)
We refer the reader to [12] for a detailed graphical analysis.

The slope ρ ′(R) at R = 1 is

ρ ′(1) = ξ(2K + 6K2 + 2nK3)/Q1 (45)

and is usually less than one for small K . Thus, for small K , there must be an unphysical
solution R > 1 which must be rejected. There is only one solution R = 1 for small K , and
all clusters are finite. For large enough K , the slope at R = 1 becomes larger than one. When
this happens, there will be a crossing between ρ(R) and R at a smaller value of R. This new
solution corresponds to the presence of an infinite cluster.

It is clear that the percolation threshold occurs when ρ ′(1) is exactly one. This condition
is the same as on a Bethe lattice [12]. Thus, the critical value Kc for percolation to occur is
given by

nK3 + 3K2 −K − 1 = 0. (46a)

For random percolation, it is convenient to express this equation in terms of the probability
p = K/u(1 − p = 1/u) that a lattice bond is occupied:

2p3 − 2p2 − 2p + 1 = 0 (46b)

which is the known result for random percolation on a triangular cactus [6], for which the
critical values are given by

p
(triangle)
c,RP

∼= 0.403 03 K
(triangle)
c,RP

∼= 0.675 13. (47a)

For the tree percolation, we go back to equation (46a). We find that the critical activity and
the critical probability are given by

K
(triangle)
c,T P = (

√
13 + 1)/6 ∼= 0.767 59 p

(triangle)
c,T P

∼= 0.383 80 (47b)
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Figure 5. The critical bond activity Kc(n) (�) and the critical bond density φB,c(n) ( ) as a
function of n.

where we have used equation (33) to calculate the bond density φB , the probabilityp being half
of it. From equation (46a), we immediately conclude thatKc(n) is a monotonically decreasing
function of n. We showKc(n) (�) and φB,c(n) ( ) in figure 5 as a function of n. We thus note
that pc(n) = φB,c(n)/2 depends on the loop activity n and increases monotonically. (On a
Bethe lattice, the critical probability for q = 4 is p(Bethe)

c = 1/3, independent of n.)
Percolation occurs earlier in the tree percolation than in random percolation, as one

would expect, as there is no wastage of bonds in forming loops without increasing the size
of the cluster. What is interesting to observe is that the tree percolation occurs earlier on the
triangular cactus than on a four-coordinated Bethe lattice. Immediately after percolation, the
infinite cluster in the tree percolation will have some infinitely large loops, and their density
will be non-zero, just as was the case on a Bethe lattice as shown in [11]. Thus, for p between
0.282 87 and 0.403 03, there are infinitely large loops in tree percolation, but not in random
percolation. This establishes that the density of infinitely large loops depends on the loop
activity n.

7. Percolation for general l

We now turn to percolation study for arbitrary loop size. For this, it will be useful to consider
a square cactus and extend the above analysis. We first remark that the case d = l′ is different
from d < l′ in that the latter allows the possibility of connecting the remaining sites with bonds
and still have these sites remain disconnected from the base site. Thus, we will consider the
two cases separately. This distinction can only be made for l � 4. The case in which all sites
are connected to the base site requires either a closed loop of l bonds, or a maximal chain of
length d = l′. The former case requires an extra factor n of the loop activity. The contribution

from the closed loop to Z(f )m (b) is simply nKlU
l′

m+1. The maximal chain covering all upper

sites contributes lKl
′
U
l

m+1; the prefactor l accounts for the lattice bond not occupied.
We now consider the remaining possibility d < l′. There are j = l − d − 1 upper sites



Role of loop activity in correlated percolation 9227

that are disconnected from the base site, but may be connected among themselves by polymer
bonds. We focus on these sites. Each such site contributes Vm+1 if it is not connected by a
bond, or Um+1 if it is connected by a bond. For j = 1, the contribution is Vm+1, as no bond can
be connected to it and still keep it disconnected from the base site. For j = 2, the contribution
from the two sites is V 2

m+1 + KU 2
m+1 = uU 2

m+1, the factor of K coming from the presence of
a bond. It is easy to see that the contribution from the j sites is uj−1U

j

m+1. The contribution

from the chain of d bonds is, as before, (d + 1)KdU
d

m+1, the first factor taking into account all
possible ways this chain passes through the base site. Thus, we finally have

Z(f )m (b) = (nKl + lKl
′
)U
l′

m+1 +
l−2∑
d=1

(d + 1)KdU
d

m+1u
j−1U

j

m+1. (48a)

We can also calculate the two parts Z(f )m (1) and Z(f )m (2) of Z(f )m (b). We merely quote the
result:

Z(f )m (1) = 2

[
Kl

′
U
l′

m+1 +
l−2∑
d=1

KdU
d

m+1u
j−1U

j

m+1

]

Z(f )m (2) = [nKl + (l − 2)Kl
′
]U
l′

m+1 +
l−2∑
d=1

(d − 1)KdU
d

m+1u
j−1U

j

m+1.

(48b)

Using equations (11b) and (40), we can show that

Z(f )m (b)/Zm(b) =
(
ξ l−1

Q1

)(
(nKl + lKl−1)R

l−1
+ ul−2

l−2∑
d=1

(d + 1)(KR/u)d
)
. (49)

It is easy to check that the right-hand side of equation (49) reduces to one for R = 1. The sum
in the equation is the derivative f ′(y) of the following sum:

f (y) =
l−1∑
d=2

yd = y2(1 − yl−2)/(1 − y)

where we have used the fact that y ≡ KR/u < 1 for all finiteK , and approachesR asK → ∞.
The derivative is trivially calculated:

f ′(y) =
l−2∑
d=1

(d + 1)yd = (2y − y2 − lyl′ + l′yl)/(1 − y)2.

We finally have the equation determining R from equation (38b):

R = ρ(R) ≡ x/ξ +

(
ul

ul + νKl

)
[(nK + l)yl−1/u + (1/u2)f ′(y)]. (50a)

We also express R1 and R2 in terms of R by using equation (48b). We have

x1R1 = 2

(
ξ l−1

Q1

)(
Kl−1R

l−1
+ ul−2

l−2∑
d=1

(KR/u)d
)

x2R2 =
(
ξ l−1

Q1

)(
[nKl + (l − 2)Kl−1]R

l−1
+ ul−2

l−2∑
d=1

(d − 1)(KR/u)d
)
.

(50b)

It is easily seen that equation (50b) reduces to (43a) for l = 3. The percolation condition is
given by ρ ′(R = 1) = 1, which is equivalent to

[1 + (l − 2)n− ll′](K/u)l + ll′(K/u)l−1 + (K/u3)f ′′(K/u) = 1 (51)
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where

f ′′(p) =
l−2∑
k=1

(k + 1)kpk−1. (52)

The relation betweenR,R1 andR2 is given in equation (43b), which is valid for all l. Similarly,
equations (42a), (44a) and (44b) remain valid for all l. This solves the problem for general l.
For l = 3, equation (51) reduces to (46a).

To calculate the loop density of (finite) loops of size l in finite clusters, we follow the
derivation of the loop density in equation (26a), except that each Um in the numerator must be
replaced by Um. Consequently, we find

φ
(f )

L = 2nKlζ l/ lQ1ξ
2 = 2n(KR)l

l(ul +Klν)
. (53a)

Let us apply the last of equations (2b) to finite clusters to calculate the number density of finite
clusters, which is given by

φ
(f )

P = φ(f )M − φ(f )B + φ(f )L . (53b)

The difference φ(∞)L = φL−φ(f )L is the density of finite-size loops (φ(∞)fL ) in the infinite cluster,
since φL contains only finite loops. To compute the density of infinite, i.e. macroscopic, loops
(φ
(∞)
∞L ), we proceed to apply the last of equations (2b) to the infinite cluster whose number

density is zero. Thus,

φ
(∞)
∞L = φ(∞)B − φ(∞)M − φ(∞)fL (53c)

and can be obtained by the use of equation (44b). It is obvious that the macroscopic loop
density is non-zero as soon as the infinite cluster appears, and is zero before percolation. Thus,
the macroscopic loops appear immediately after percolation, as was also the case on a Bethe
lattice. Indeed, the contribution from an infinite cluster to any density becomes non-zero as
soon as percolation occurs.

We now consider the limiting behaviour as l → ∞. We show that the solution reproduces
the result for a q = 4 coordination number Bethe lattice. We recall that y < 1 for finite K .
Hence, yl or yl

′
vanishes and f (y)→ y2/(l − y), and there is no dependence on n, which is

a property of the solution on a Bethe lattice. Thus, we can replace K/u by p. We find in this
limit that f ′(y) = y(2 − y)/(1 − y)2, f ′′(p) = 2u3 = 2/(1 −p)3 and x/ξ → 1/u2. The first
term inside the square bracket in equation (50a) also vanishes in this limit. Hence, R is given
by

R = [(1 − p)/(1 − y)]2. (54)

Similarly, the first two terms in equation (51) also vanish and the condition for critical
percolation is given by the last term, which is

2p = 1 − p. (55)

Thus, the critical percolation probability pc = 1/3, which is a known result for a four-
coordinated Bethe lattice. We also note from equation (31) that the loop density of the infinitely
large loops in the infinite cluster becomes one. This is also the loop density of the infinitely
large loops on a q = 4 coordinated Bethe lattice, as discussed at the end of section 5.1. The
density of finite size loops is certainly zero.

It should be obvious that the coefficient 2 on the left-hand side of equation (55) is due to
the two bonds incident on the base site of a polygon. If we consider a cactus in which δ upper
polygons are incident, then this factor will be replaced by 2δ in equation (55). Then the critical
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percolation probability will be given by the well known result for a 2(δ + 1)-coordinated Bethe
lattice:

p(Bethe)
c = 1/(2δ + 1). (56)

8. Conclusions

We have considered correlated percolation, which includes random and tree percolation, on
a Husimi cactus with arbitrary l in order to shed light on the effects of loops on percolation.
The loop activity n is a parameter in the model. The solution is obtained recursively and
is exact on the cactus. We conclude that infinitely large loops appear immediately after
percolation, similar to the situation encountered on a Bethe lattice [11, 12]. Following the
arguments presented in [11, 12], we easily conclude that these macroscopic loops are formed
by the polygons at the surface of the cactus in the limit when it becomes infinitely large. The
density of such macroscopic loops depends on the value of the loop activity n, and is non-zero
even for tree percolation. We have calculated the contributions to all densities from finite and
infinite clusters in the recursive scheme. The percolation threshold pc and the percolation
probability Pn(p) are found to be functions of l and n, and the general results are given in
equations (51), and (44c), respectively. We have shown that the critical bond probability for
tree percolation is smaller than its value for random percolation. Indeed, it is a monotonically
increasing function of the loop activity n, as shown in figure 5. This is consistent with the
common belief that the presence of loops only helps to reduce the size of a cluster containing
the same number of bonds. The critical threshold and the density of macroscopic and finite
loops, if they are present, for the tree and the random percolation depend on the size l of the
polygon.

An interesting property of the random percolation is the observed independence of the
ratios x and x1 of the size l of the polygons. This is a reflection of the inherent randomness
in the placement of bonds on any lattice. Thus, l plays no role in random percolation as far as
the local densities φk , φM and φB are concerned. Even the density of loops φL = (2/l)pl , see
equation (26), depends on l in a trivial fashion. The factor of l in the denominator is due to the
definition of φL being per site, and will disappear if we define it per polygon. The factor pl is
trivial and accounts for the presence of l bonds in each loop. However, percolation properties
like the percolation threshold, percolation probability, the density of macroscopic loops, etc
depend on l.

Comparing the random percolation on a q = 4 Bethe lattice with that on a Husimi cactus,
also having q = 4, we observe an interesting phenomenon. The critical threshold on the Bethe
lattice isp(Bethe)

c = 1/3, and the density of macroscopic loops in the maximal cluster [12] is 1 on
the q = 4 Bethe lattice, where there is no distinction between the tree percolation and random
percolation. On a cactus, pc

∼= 0.403 03 for l = 3, and decreases as l increases, reaching
p(Bethe)
c = 1/3 as l diverges. The critical probability for tree percolation on a triangular cactus

is smaller than that for random percolation on the cactus, but larger than that on the Bethe
lattice, and approaches the latter as l diverges. The critical probability on the Bethe lattice
is a lower bound for general (arbitrary n) percolation, and the two approach each other as l
diverges. The macroscopic loop density in the maximal cluster on the cactus is always less
than one, see equation (31), and approaches one as l diverges.

The limit l → ∞ for the cactus is very interesting. In this limit, the polygons become
infinitely large, and the cactus looks identical to a q = 4 Bethe lattice, and the connectivity
of the polygon becomes inconsequential. At a microscopic level, there does not appear any
difference between the Bethe lattice and the cactus. From equation (26), we note that in the
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l → ∞ limit, the loop density vanishes, since K/u < 1 for all finite K . This is consistent
with what is expected on a Bethe lattice. The density of macroscopic loops is also equal, as
noted in the previous paragraph. The percolation thresholds are also the same.
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